
User Material Models

February 17, 2022

Revision list

Revision Date Comments

4 2022-02-17 Fixed error in user_curve_location() array de�nition where the

arguments were in reverse order

3 2018-12-14 Updated software requirements

2 2015-10-30 Added two new subroutines: element_neighbor_list() and

ip_coord()

1 2015-10-15 Updated text

0 2015-09-22 First issue

Introduction

IMPETUS Afea Solver comes with support for user de�ned material models. Our solution is to let the user compile a

DLL (dynamic-link library) �le which then is linked to the solver during the start of a simulation. The user material is

not compiled into the software itself and it allows for several advantages. Since object code of the software isn't

needed, it will works with any version of the solver. This means one can always use the latest version of the Solver.

We allows up to nine different user de�ned material models.

Structure

The user material zip �le (provided by our support) contains a Visual Studio 2015 solution with two project folders

inside. The C++ project "mat_user_functions" contains a wrapper to call built-in subroutines/functions from the solver.

Do not edit the �les inside this project. The other project "mat_user" which is an Intel Fortran project, contains the

code for user de�ned material models. There are two �les inside this project: mat_user.F and custom_functions.F. As

the name suggests, custom_functions.F can be used to de�ne custom subroutines/functions. This is completely

optional but we recommend using it. The other �le mat_user.F is the main �le and this is the one that should be

modi�ed. Start by opening mat_user.sln with Visual Studio. Before compilation, remember to change compilation

mode from Debug to Release. Now, expand "mat_user" project from the solution tree and open mat_user.F under

"Source Files". We've provided with some example models which are implemented in mat_user_1(), mat_user_2()

and mat_user_3(). Feel free to modify these and customize them to your needs. The example in mat_user_1() is

similar to our built-in *MAT_METAL material model.

After the compilation, mat_user.dll will be copied to the output folder located in the root directory of the Visual Studio

project. When executing a simulation, check the "Use de�ned material model" and add the path to the �le.

Following subroutines are de�ned in the mat_user.F �le:

• mat_user_X(): Main subroutine for the user material X (X: 1-9)

• init_mat_user_X(): Initialization subroutine for the user material X (X: 1-9)

• mat_user_set_state_variables(): Routine where the number of state variables, state variable output and

damage type location are de�ned

Arguments for mat_user_X():

Argument Description

strain(6) Total strain tensor
dstrain(6) Strain increment tensor
stress(6) Stress tensor
F(9) Deformation gradient
U(6) Right stretch tensor
ifail integer variable to set if the current integration point has failed or not
hist(*) History state variable array (Size de�ned in mat_user_set_state_variables())
cmat(100) Material parameters
shear_max Max shear stiffness variable used for time step calculation
bulk_max Max bulk stiffness variable used for time step calculation
bfac_max Max viscosity variable used for time step calculation
iel Element ID
ip Integration point ID (local ID for the speci�c element)
itype Element type
dt1 Current time step size
tt Current time

Arguments for init_mat_user_X():

Argument Description

hist(*) History state variable array. Size de�ned in mat_user_set_state_variables()
cmat(100) Material parameters
shear_max Max shear stiffness variable used for time step calculation
bulk_max Max bulk stiffness variable used for time step calculation
x Node coordinate
iel Element ID
ip Integration point ID (local ID for the speci�c element)
itype Element type

Getting started

Symmetric tensors

All symmetric tensors in our solver uses an alternative notation of the Voigt notation. The traditional voigt notation for

a 3X3 matrix is de�ned as: 11, 22, 33, 23, 13, 12. Our de�nition is: 11, 22, 33, 12, 23, 13.

To the left is our notation, to the right is the traditional notation.

Material parameters

Material parameters de�ned in the *MAT_USER_X command can be accessed by the cmat array. The indices are the

same, as both starts at position 7. Position 1-6 are reserved for other properties such as cmat(1) = density, cmat(2)

= young's modulus, cmat(3) = poisson's ratio, etc. The example below shows some reserved and pre-calculated

variables in cmat:

! material data from input: density, young's modolus and poisson's ratio

dens = cmat(1)

young = cmat(2)

pr = cmat(3)

! pre-calculated

shear = cmat(43)

bulk = cmat(44)

! these variables are automatically set depending damage and erosion type

damage_type = nint(cmat(80))

erode_flg = nint(cmat(81))

State variables

The state variable array is a container where one can store data for each integration point. These variables can

change throughout the simulation. Examples of typical variables are "Effective Plastic Strain" and "Damage". To use

state variables, use the hist array to load and store data. It's a good idea to set initial values for these variables in

init_mat_user_X() subroutine.

http://en.wikipedia.org/wiki/Voigt_notation
http://en.wikipedia.org/wiki/Voigt_notation

! load state variables: effective plastic strain, damage and yield stress

epsp = hist(1)

dmg = hist(2)

sigy0 = hist(3)

! some code involving epsp, dmg and/or sigy0

[...]

! save state variables

hist(1) = epsp

hist(2) = dmg

hist(3) = sigy0

Before state variables can be used, one needs to de�ne the size of the array. Start by editing

mat_user_set_state_variables() and modifying the num_variable value. For instance, if we are going to

specify the number of history variables for mat_user_1(), we need to assign a value to num_variable(1). In the

default example (see code below), we have set the size to 3 for position 1 in the num_variable() array. Position 1

indicates user material ID 1, value 3 is the number of state variables for this user material.

num_variable(1) = 3

State variables as contour plot

With the size set, we are ready to go but we will not be able to plot these values in the Post Processor. None of these

values are written to our output �les by default. To add a state variable to the output, we need to tell the solver to

output it. This can be done by calling mat_user_set_name(). variable_id tells which index in the state variable

array to output. variable_name speci�es the name the state variable should have.

user_material_id = 1

variable_id = 1

variable_name(1:40) = "Effective plastic strain"

call mat_user_set_name(user_material_id, variable_id, variable_name)

variable_id = 2

variable_name(1:40) = "Damage"

call mat_user_set_name(user_material_id, variable_id, variable_name)

If the variable name matches one of the built-in ones then these will be located in its speci�c category in contour plot.

Names not matching any of the built-in parameters will be located under the "General" category.

Curves & functions

Curves & functions can be used in the user material models just like in *MAT_METAL. To use curves, one needs to tell

the solver where in the material parameter list the curve is located. This can be done by editing

mat_user_set_state_variables() and modify/add the array user_curve_location. This is a 2D array with two

arguments de�ning user curve ID and material ID. For instance, if we have two curves and want both de�ned, we

simply add:

user_curve_location(1, 1) = 7

user_curve_location(2, 1) = 8

This will tell the solver that there are curves in positions 7 and 8 in the material parameter array (cmat) for

mat_user_1. Position 7 and 8 represents the two �rst columns on the second line in the *MAT_USER_X command.

More information about how to call curves and functions can be found in the section "Built-in subroutines/functions"

further down in this document.

Damage de�nition

Material failure can be de�ned as element erosion or node splitting. The variable damage_location de�nes where in

the state variable array that damage is located. This variable is only needed for node splitting but we recommend to

set it anyway even when not using node splitting. erode_flg de�nes if the material model should use element

erosion (=1), node splitting (=2) or none (=0). If erode_flg_pos is set, the value of the material parameter (cmat) in

that speci�ed location will determine to use element erosion or node splitting.

damage_location = 2

erode_flg = 2

erode_flg_pos = 0

call mat_user_set_damage(user_material_id, damage_location, erode_flg, erode_flg_pos)

This will should enough for node splitting since the Solver will handle the rest. For element erosion, failure handling

must be de�ned manually. To do this, add this after the damage calculations in mat_user_X():

! element erosion (node splitting will not execute this if-statement)

if (dmg.ge.1.0d0.and.erode_flg.lt.2) then

 dmg = 1.0d0

! reset deviatoric stresses

 stress(:) = 0.0d0

! erosion -> set failure flag

 if (erode_flg.eq.1) ifail = ifail + 1

endif

We set the dmg variable to 1.0, reset the stress array and we increment ifail with 1. If enough integration points

per element fails, then the solver will automatically erode it. This code can co-exist with node splitting capability since

node splitting will set the erode_flg variable to 2. If that happens then this code will never be executed.

Built-in subroutines/functions

We've made some of the core functionality of the solver available. Return values from the subroutines are marked

with underscore in the parameter list. Functions return its value as return values.

Load Curve / Function

Fortran subroutine

call load_curve(idlc, x, f, p, epsp, sigy0, T, dmg)

The last 5 parameters (p, epsp, sigy0, T & dmg) are for functions. They must be set to 0 if not being used.

This call can be used both to call curves and functions.

Parameter Description

idlc Function/Curve ID (integer)
x Value of x in function f(x) (double precision)
f Return value (double precision)
p Pressure parameter (double precision)
epsp Old effective plastic strain parameter (double precision)
sigy0 Yield stress parameter (double precision)
T Thermal parameter (double precision)
dmg Damage parameter (double precision)

! Load a curve

call load_curve(idlc, epsp+deps, sigy1, 0, 0, 0, 0, 0)

! Load a curve or a function with pressure and effective strain rate variables set

call load_curve(idlc, epsp+deps, sigy1, p, epsp, 0, 0, 0)

! Load a curve or a function width all parameters set

call load_curve(idlc, epsp+deps, sigy1, p, epsp, sigy0, T, dmg)

Normalize a vector

Fortran subroutine

call normalize(v, x)

This subroutine will return normalized v and also its length x.

Parameter Description

v 3-component vector (double precision)
x length (double precision)

Cross product

Fortran subroutine

call cross(a1, a2, a3)

This subroutine will return the cross product between a1 & a2 in a3.

Parameter Description

a1 3-component vector (double precision)
a2 3-component vector (double precision)
a3 Return value, 3-component vector (double precision)

Dot product

Fortran function

value = dot(v1, v2)

Returns the dot product between v1 and v2.

Parameter Description

v1 3-component vector (double precision)
v2 3-component vector (double precision)

Polar decomposition

Fortran subroutine

call polar_decomposition(F, R, U, Uinv)

This subroutine computes the polar decomposition and returns new values for R, U & Uinv.

Parameter Description

F Positive de�nite tensor (3X3) (double precision)
R Rotation tensor (3X3) (double precision)
U Symmetric stretch tensor U (double precision)
Uinv Inverted symmetric stretch tensor (double precision)

Eigenvalues of symmetric 3X3-matrix

Fortran subroutine

call eigval_3x3_symm(avec, eigval)

This subroutine returns the eigen values calculated from avec.

Parameter Description

avec 6-component tensor (double precision)
eigval Returns 3-component vector (double precision)

Eigenvectors of symmetric 3X3-matrix

Fortran subroutine

call eigvec_3x3_symm(avec, eigval, eigvec)

This subroutine returns the eigen values calculated from avec.

Parameter Description

avec 6-component tensor (double precision)
eigval 3-component vector (double precision)
eigvec Returns two eigenvectors eigvec(1) and eigvec(4) in one 6-component array (double

precision)

! First, find eigenvalues and then use them to find the eigenvectors

 call eigval_3x3_symm(stress, eigval)

 call eigvec_3x3_symm(stress, eigval, eigvec)

Invert 3X3-matrix

Fortran subroutine

call inv_3x3(A, B, detA)

This subroutine returns the eigen values calculated from avec.

Parameter Description

A 3X3 matrix to be inverted (double precision)
B Return value, inverted matrix (double precision)
detA Return value, determinant (double precision)

Volume of an element

Fortran function

value = element_volume(iel, itype)

Returns volume of an element in double precision.

Parameter Description

iel Element ID (integer)
itype Element type (integer)

Volume of an integration point

Fortran function

value = ip_volume(iel, itype, ip)

Returns volume of an integration point in double precision.

Parameter Description

iel Element ID (integer)
itype Element type (integer)
ip Integration point ID (integer)

Initial volume of an integration point

Fortran function

value = ip_initial_volume(iel, itype, ip)

Returns initial volume of an integration point in double precision.

Parameter Description

iel Element ID (integer)
itype Element type (integer)
ip Integration point ID (integer)

Get element nodes

Fortran subroutine

call element_nodes(iel, itype, n)

This subroutine returns an array of node IDs of a speci�c element.

Parameter Description

iel Element ID (integer)
itype Element type (integer)
n Return value, array (integer)

Get element neighbors

Fortran subroutine

call element_neighbor_list(iel, itype, list, num_neigh)

This subroutine returns an 2D array of neighboring elements and the number of neighbors. First value of the

array contains the neighboring element ID. The second value contains the element type of the neighboring

element.

Parameter Description

iel Element ID (integer)
itype Element type (integer)
list Return value, 2D array (integer)
num_neigh Return value, number of neighbors (integer)

Get integration point coordinate

Fortran subroutine

call ip_coord(iel, itype, ip, xip)

This subroutine returns the coordinate of an integration point.

Parameter Description

iel Element ID (integer)
itype Element type (integer)
ip Integration point (integer)
xip Return value, 3-component vector (double precision)

Element conversion (internal to user ID)

Fortran function

value = element_i2u(iel, itype)

Returns user (external) ID of an element.

Parameter Description

iel Element ID (integer)
itype Element type (integer)

